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Abstract  

A new realization o f  the con formal group in the  classical phase space o f  a positive mass 
relativistic scalar particle is obtained.  A physical interpretat ion in the  spirit o f  eonformal  
relativity is discussed. 

1. Introduction 

The conformal group has recently become an object of attention in several 
branches of theoretical physics. By conformal transformations are understood 
the elements of the full conformal group Gconf  including the nonlinear Hanties 
transformations ("accelerations") as well as the traditional Poincar6 transform- 
ations. The conformal group is essential in relativistic cosmology. It indepen- 
dently appears in quantum mechanics where it describes the symmetries of the 
hydrogen atom. However, the most essential role of the conformal group is 
due to the fact that it forms the invariance group of the charge-free Maxwell 
electrodynamics. This motivates the use of Gconf  in elementary particle physics 
as a "skeleton symmetry group'" describing the asymptotic behavior ef  particle 
systems. Mathematically, the Gconf  is a simple Lie group locally isomorphic 
to both matrix groups 0(2.4) and SU(2.2). The Lie algebra of G c o n f  is the 
smallest simple Lie algebra containing the algebra of the Poincar6 group. 

The conformal transformations, in general, do not conserve the space-time 
metric, but they do conserve the light cone. This might lead to an idea about 
a conformal relativity being a generalized version of special relativity (see, e.g., 
Page, 1936). A possible step in this direction is considered in this paper, where 
a new realization of Gconf as a group of operations on a classical phase space 
is constructed. In the first part of the paper some elementary concepts con- 
cerning the symplectic manifolds are quoted and the mechanism that makes 
the symplectic manifolds the homogeneous spaces of arbitrary Lie groups is 
outlined. In the second part this mechanism is used to provide the realization 
of Geonf on a generalized complex disc. Then, a mapping of the generalized 
disc onto a symplectic manifold of  the positive mass relativistic scalar 
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particle is constructed. In the last section the possible physical sense of the 
resulting representation is discussed and its asymptotic correspondence to the 
standard idea of the classical phase space is proved. 

The following standard notation will be used: 

T(P) - tangent bundle 
T*(P) - cotangent bundle 

k 1 
-- [®r(s)]®[® z (s)l 

i=1 /=1 

k k 
A T(P), A T*(P) - exterior products of T(P) and T*(P), respectively 
F( cf, U) - set of  sections of the bundle g over U 
F(T(k,t)(P)) - set of tensor fields on P 
A(~2) - set of  holomorphis functions on [2 C C 1 

- Lie derivative 
/ -- left interior product 
A - exterior product 
O -  symmetrization 

2. Symplectic Manifolds as Homogeneous Spaces o f  Arbitrary Lie Groups 

The notion of symplectic manifold generalizes the physical idea of phase 
space, where the "Poisson bracket" is a fundamental structure. 

Definition. A symplectic manifold is any pair (P, ~ )  where (1) P is a 

2n-dimensional differential manifold; (2) w E F( A T*(P)), rico = 0; 

and (3) the 2-form ~ is nonsingular. 

Briefly, the symplectic manifold is an even-dimensional differential mani- 
fold with a closed nonsingular 2-form chosen. Given a symplectic manifold 
(P, 6o) the group D(P, co) of canonical transformations is defined as the auto- 

morphism group of (P, ~) ;  that is, D(P, co) = (r ED(P): ~ r * ~  = ~},  D(P) 
being the group of all diffeomorphism P +~ P. The existence of a distinguished 
2-form ~ on P induces two mappings that intercommunicate the 1-forms and 
vector fields on P: 

(1) : r (T(e) ) - ,  r(T*(e))  

df 
(2 )  (.O# = (.O~ 1 : r ( T ( e ) )  

The mapping 6o~ is defined by ~o~ (~) = ~ _1 ~ ,  where ~ E F(T(P)) and the 60# 
is the unique mapping inverse to w ~ (the existence of co# follows from the 
nonsingularity of 6o). A vector field ~ E P(T(P)) is called locally Hamfltonian 
if A a ~o = 0. The locally Hamiltonian fields form a linear space, which will be ¢ 
denoted by H(P). Obviously H(P) is also a Lie algebra with respect to the 
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commutation of the vector fields. Since 
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~ o 0  = ~ / d e  + d(~ __] co) = d [ ~  (~)] (2.1) 

then the image of H(P) under the mapping ~ is contained in the set 
BP(T*(P)) of all closed 1-forms on P. A vector field is called globally Hamil- 
tonian if there exists a ~oE C ~ (P,R 1) such that 6oh(0 +d~ = 0. The set of  
globally Hamiltonian fields Ho(P ) forms an ideal in H(P). The quotient Lie 
algebra H(P)/Ho(P ) is isomorphic to the first de Rham group of cohomology 
of the manifold P : H  1 (P, R 1). The form w introduces the structure of an 
infinite-dimensional Lie algebra on the function space C=(P, R 1). 

Definition. Let f , g E C~ (P, R 1) and let 3' = w # o  d : C°° (p, R1) -> Ho(P). 
Then the skew product (Poisson bracket) is defined by 

{f, g} ~f-- w(3'(f), 3'(g)) = 7(f)g = - 7 ( g ) f  (2.2) 

The product {, } is a skew, bilinear form satisfying the Jacobi identity. It 
is introduced to correspond to the commutator in the Lie algebra of vector 
fields on P. The correspondence is given by the mapping 7. In fact, 3' is an 
homomorphism of the algebra C ~ (P, R) into the algebra H o (P): 

[7(f ) ,  3'(g)] = 3'({f, g)) (2.3) 

The homomorphism kernel is the set of all real functions constant on P. 
This might be summarized in the form of the following exact sequence of Lie 
algebras: 

0 'a'R1 ~ ' C(P, R1) V--7-'+Ho(P) >0 (2.4) 

where t is the natural injection. 
In many problems of mathematical physics the symplectic manifold 

appears as a realization space for the elements of a Lie group (which is then 
interpreted as the symmetry group of a physical system). This leads to the 
following notion of a symplectic manifold being a homogeneous space of a 
Lie group G: 

DefiniHon. Given a Lie group G with a Lie algebra f¢, a G-symplectic 
space is (P, co, G, o), where (1) (P, ~ )  form a symplectic manifold, 
and (2) a is an homomorphism of  G into the group of  automorphism 
D(P, ~)  such that A V Gp2 = o(g)pl. 

Pl,P2 CP g E  

The group homomorphism a induces the homomorphism of the Lie algebras 
da : ~-+ H(P) defined by 

d t=o [do(x)f](p)=-d-~ f [a(exp( - tx ) )p] ,  x E  f~ , fEC~' (P,R I) 

(2.5) 
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The homogeneous space P can be naturally identified with any of quotient 
spaces G/Gp, where Gp is the small group (stabilizer) of  any point p @ P. The 
G-space P is called a strictly homogeneous symplectic space of the group G if 
da (~ )  C Ho(P), i.e., if the following diagram commutes: 

0 

0 ~ R1 ~ Coo(p,R 1) "r ~ Ho(P ) ~ 0 

H(P) 

H a ( p , R  1) 

0 

(2.6) 

Here, ~ is an homomorphism which is called the uprised do. 

3. Geometrical Structures Naturally Connected with the 
Generalized Disc D 

We begin this section with an outline of the geometrical structures 
generated by the complex structure of a bounded single connected domain 
M in the complex n-plain C n . The injection L: M C C n defines the natural 
coordinate system on the whole, bounded domain: L(z) = (z 1 , . . . ,  z n, Z 1 , . . . ,  
Z n) for z EM. 

The space 

f M = { f E d F( ~ T*(M) ) : ~M in~ f A j <  °% f = f * dz l /~ . . . Adzn , f *  E ~ (M) } 

of the holomorphic n-forms f that are square integrable is a complex Hilbert 
space, where the scalar product is given by 

(f, g)~'f in2fA~ 
M 

( f i s  the antiholomorphic form J~* d ~  A " " • Adfn) .  
The geometric Riemannian and symplectic structures may be defined on 

M b y  introducing the Bergman kernel form. 
Let (h o, h i . . . .  ) be a complete orthonormal basis in ~¢gM" the form 

Kd=f K * ( z , ~ ) d z l A  . . . A d z n  Ad~lA . . .  Ad~ n = ~ h i A hi 
i=0  

(3.1) 

is precisely the Bergman kernel of the bounded domain M. This definition of 
K does not depend on the choice of the orthonormal basis in ~¢t~M . In the new 
system of coordinates z = z(v, ~), f = ff(v, ~), [z = (z I . . . .  , zn), f = (z 1 , . .  -, fin) 
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are understood as independent variables] the Bergman kernel function 
K*(z, ~) takes the form 

a(~, i )  
K*(v ,  ~) = K*(z, £)  det - -  ~(~, ~) 

If  the coordinate transformation is given by the holomorphic mapping 
z = z(v), then 

a(z,~)_ a~ 2 
det O(--vi' v ) - 

T h e  f o r m  

579 

(3.2) 

0 2 log K*(z, Z) 
gkff~ - o z k o ~ r  n 

As easily seen, the remaining conditions are fulfilled too. 
In view of  these facts, one can now introduce the Riemannian and symplec- 

tic structure of  the bounded domain M. We have H = ds 2 + iw,  where ds z = Re/-/ 
and co = ImH. From the definition of  H w e  have the following: 

(a) ds ~ is the real symmetric 2-form and it is also proved to be positive 
defined and nonsingular. So, ds 2 defines some metric structure on M, which 
is called the Riemann-Bergman metric structure: 

n 

d s  2 =  ~ g k ~ d z k Q ) d z  m ( 3 . 4 )  
t¢,m = 1 

(@denotes the symmetrization). 
(b) The imaginary part w is a nonsingular real skew 2-form; moreover, 

dw = 0, hence (M, co) is the symplectic manifold: 
7/ 

co = --i  ~ gkin dzk  A d~ m (3.5) 
/¢,m =1 

where 

~2 logK*(z ,  5) 
dzk  ® d~ m H = O z k O ~ m  

k ,m =l 

defines a Hermitian structure on M. H is said to be Hermitian if the following 
conditions are fulfilled: 

(1) H(X,}, + X2~, ~) = XlH(},, ~) + X2H(~, r~) 

(2) H(~, ~) = H(~, ~) (3.3) 

(3) g(i}, ~) =/~/(}, , )  

where }1, }2, ~ E r(T(M)). Now the condition (2) is fulfilled because of  the 
equation 

g k m  = grn~ 
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Both geometrical structures are uniquely defined by the complex structure 
of M. 

We now consider a subgroup of all those diffeomorphisms M ~ M, which 
preserve the complex structure of M. Evidently, G(M) is the group ofholo- 
morphic transformations of M onto itself. Since ds 2 and ~ are fully determined 
by the complex structure of M, G(M) is a group of isometrics of the Rieman- 
nian manifold (M, ds 2) and also a subgroup of canonical transformations of the 
symplectic manifold (M, ~ ) .  In the theory of differential complex manifolds 
it is proved (see Kobayashi, 1972), that the group G(M) is a Lie group with a 
compact isotropic subgroup G x ( M  ), x • M .  We now apply that procedure to 
our concrete case, with M being a generalized complex four-dimensional disc. 

Let Mat2(C t) be the complex 2 x 2 matrix algebra. An arbitrary matrix z • 
Mat2(C i) may be written in the form z = z u o u where zU • Cl and ao =E = (o o), 
oa = (o ~), 02 = ( o_i /o), o3 = (o a 9_,). The Hermitian matrixE - zz + can be 
transformed with the help of a unitary transformation to the diagonal form 
E - zz + = U(xC o )U  +, where U •  U(2) and Xl, X 2 are eigenvalues. We write 
E - zz + > 0 if ka '> 0 and X 2 > 0. 

Definition. The generalized disc is the following subset of Mat s (C 1 ) : 

D a=f (z • Mat2(C 1) :E  - zz  + > O} 

= {z E Mat2(C 1) : Trzz + < 2 and det (17 - zz  +) > 0} 

As immediately seen, D is an open subset of the ball with radius 2 and thus 
is bounded. The injection L :D C Mat2(C 1) ---- C 4 defines a complex coordinate 
system on D : ~(z) = (z °, z 1 , z 2, z3). Taking the homogeneous normalized poly- 
nomials in the variables z u to be a basis in the Hilbert space J/fD, we obtain 
the Bergman kernel form for the generalized disc: 

K ( z , z  + ) = ~ [ d e t ( E - z + z ) ] - 4 d z  o A . . .  A d z  3 A d ~  ° A . . . A d ~  3 (3.6) 

K *(z u, gv )  = c [I - 2zUgZ'6uv + (z)2(2) 2 ]-4 

Z + = Z#O~, 6#v = Ill 0 

1 

1 

0 

1 
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t 1 ° 1 - 1  

rl uz' = rluv = - 1  ?, c = const 

0 

1 
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The coordinates of  the Hermitian form H i n  the basis (dz x, dU'Q are 

g~.~, = 8 [det (E - z+z)] -2[(z~.(g)2 - z~O6~x)(~3.(z) z - z ° 6 ~ )  

- det(E - z + z)~/zx] (3.8) 

The group G(D) of  holomorphic transformations of  the generalized disc 
onto itself is isomorphic to the group SU(2, 2)/z 4 where z 4 = (id, -id,  i(id), 
- i(id)). 

The group SU(2, 2) is  one o f  matrix realizations of  the conformal group 
preserving the form z+~z, where z E C  4 and ~ = (o E - 8 ) .  If  we put g = (~ ~) 
o~,/3, 7, 6 E Mat2(C I )  then g belongs to SU(2, 2) provided that the following 
conditions are fulf'flled: 

~+/3 - 3,+8 = 0 

13+/3 - 6 +6 = - E  det g = 1 (3.9) 

Isomorphism o :SU(2, 2)/z 2 -+ G(D) is given by 

2 "1 = o '(g)g = (0~Z + / 3 ) ( 7  Z + 8 )  -1 ( 3 . 1 0 )  

The above definition is meaningful for z ~ D  and a,/3, 7, 6 fulfilling (3.9). 
We have proved that D is the homogeneous space of  SU(2, 2), so we can put 

D -~ SU(2, 2)/S 1 x SU(2) x SU(2), where S 1 x SU(2) x SU(2) is the stabilizer 
of  the point z = 0 E D .  

We are mostly interested in the symplectic structure (D, ~ ) ;  in what follows 
we shall describe some of  its fundamental properties. D is a simply connected 
domain. Hence the first group of  cohomology is trivial, i.e., H 1 (D, R 1) ~ 0, 
and the locally Hamiltonian fieids on D are globally Hamiltonian. Thus, diagram 
(2.6) may be simplified to the form 

0 ) - R  1 t > C¢°(O,R  1 ) 7 Ho(D ) , 0 

ae (2, 2) (3.11) 

(z) 2 -- r~uvzUz v (3.7) 
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We shall find now the values of the homomorphisms d~ D and X D. With this 
aim we specify a basis in the Lie algebra 5g~(2, 2): 

e r e  - n m  

e ki 0 ], elm = --ie m 

2,), o) 
Ohm) er=(/ :) 

(3.12) 

wherek~l ,  m , F / =  l ,  2, r , s  = l ,  2 , 3  and e ll = (o 1 o), c12 = ( o  1),  e21 = (o Oo) ' 
ez2 = (o 0). Because of (2.5) the values ofda D in that basis are 

1[ a a a (a 
daD(elrJ)=~ (z°+z3)ZUaz u ago a-z-g-(z) 2 bz o 

+ (conjugate term) 

daD(elre2)= ~- [(zl -- iz2)z u a 
az u 

1[ 0 
d{~D(d))  = T (z~ - iz2)z" azU 

1[ a 
dOD(e]2e ) = 2 (zO -- z3)zU az~ 

£3 

(3.13a) 

Dz 1 +i +(z) z ~z 1+ ~z 2 +(*) 

(3.13b) 

- ( a i a +(z) 2 a_.aSj +(*) 
aZ 1 OZ 2 

0.13c) 

+ - -  (~)~ \~z o az~]l +(*) az ° az 3 - 
(3.13d) 

dOD(elm~)=T (z°+z3)zU'TzU+azq~+az-5 az ° aD +(*) 

(3.13e) 

-i[ a a ~+(~)~(a i a)] daD(el2m)=-~ (zl-izZ)z~*~z~+az-T+iOz--'- ~ ~ z  1+ ~ + (* )  

(3.130 

dOD(e]lm) = (zl--izZ)ZU~zU+Oz, O--fi+(z)2 - ~ + ( * )  

(3.13g) 

deD(e]2m)= T (z°-z3)z u +az o az 3 a--~6+~--~ +(*) 

(3.13h) 
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- - + i z  3 + (  (3.13i) ~ z  o - iz 2 Oz 3 Oz I ~Z 2 

+ z I ~ _ z 3 ~ iz o . . . . . .  + ( * )  (3.13j) daD(e2)  --iz 2 3z 0 ~z 3 ~z 1 Oz 2 

[ 0 3 +izZ 0 - - ~ 1 + ( * )  (3.13k) dOD(e3) = - i [ z  3 ~ + z ° - -  - iz 1 
~z ~ ~z 1 Oz ~ ] 

e2 + (*) 

(3.131) 

(3.13m) d o D ( k 2 ) =  iz2 ~ + z 1 8 z3 ~ ~ + 
~z 3 - ~z l + iz° Oz 2 ( * )  

d o D ( k 3 ) = - i [ - z  3 ~ z ° O + i z  2 0 iz 1 3 1  ~Z---- 6 -- ~Z-- ~ ~Z---- S -  ~ + (* )  (3.13n) 

d a D ( f o  ) = --iz u ~z--- ~ + i~ u ~---~ (3.13o) 

The values of  the lifting XD are: 

Xz)(e/k) = - 4 i  T r e i k [ z + ( E -  zz+) -1 + ( E -  z + z ) - l z  +] (3.14a) 

~D(ei+ x) = - 4 i  Tr ek i[z (E - z+z) -1 - (E - zz+) - t  z] (3.14b) 

Xz)(er) = 4 Tr or[(E - zz+) -1 + z (E  - z+z) -az  +] (3.14c) 

XD(ks) =- -4  Yr a s [z+(E - z z + ) - t z  + (E - z+z) -1 ] (3.14d) 

XD(fo ) : 4 T r [ ( E - z z + )  -1 + (E - z+z) -1 + z (E  - z + z ) - l z +  +z+(E - z z+) - l z ]  

(3.14e) 

We have introduced the notation: eik = t ,  ik _ l¢im. ik ) and e ~  = l t A k  + Zeim. ik ). - ~tere ~kere 

4. Symplee t ic  Space T*(M4) 

Now we shall briefly discuss the basic properties of the conventional phase space 
of the relativistic particle. Let M 4 be the Minkowski space and (q o, q 1, q2, q3) 
the coordinate system on M 4. The cotangent bundle T*(M4)with  its canoni- 
cal projection II : T*(M4) ~ M  4 is the space for a relativistic particle. The 
1-forms dq °, dq 1 , dq ~, dq 3 generated by the coordinates are a basis, and an 
arbitrary u E T*(M4) can be expressed by 

3 
u = ~ p u ( q ) d q  u (4.1) 

#=0 
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Hence, (qU, Pv) is a coordinate system on T*(M4). The closed 2-form 

3 
a=dPl*u = ~ dpu Adqu  

u =0 

determines the symplectic manifold structure on T*(M4). (Here, qU are the 
coordinates of the position of a particle in space-time, and pV = rffUpu are the 
coordinates of a 4-vector of  the momentum). When one transforms the 
coordinates q'U = q,U (qO . . . . .  q3) the following transformation rule holds 
for the momentum: 

3 
' 0 y Oq ~ Pu(q , ' "  " , q3 ,Po , ' "  . ,p3) = ~ 3 - ~ p v  (4.2) 

V=O 

, Pv) is then the new coordinate system on T*(M4) cannonically connected 
with the old one. Note that the momenta in the new coordinate system are linear 
functions of  the momenta in the old coordinate system. In what follows we 
shall be mostly interested in the following special cases of (4.2), which generate 
the full conformal transformation group of M: 

Translations: 

q'U = qU + t u, t E R 4 (4.3a) 

Lorentz transformations: 

q'U = LvUqV, L~ULpVrluv = rico, 

Dilatation: 

"Accelerations": 

det[Lv u] = + l ,  sgnLo ° =+1 

(4.3b) 

qlZ + q2c~ 
q,U = 1 + 2qc + q2c2 '  c E R 4 (4.3d) 

An arbitrary conformal transformation is the superposition of transformations 
of  form (4.3). The "acceleration" transformation is not determined on the 
whole Minkowski space, as it does not make sense for 1 + 2qc + q2 e 2 = O. Thus, 
the action of Geonf is not correctly defined on the whole o f M  4. The formulas 
for the transformations of  the momentum corresponding to (4.3) are l' Pla = Pu or 

Poincar6 subgroup (4.4a) 

p'~ = L~lVpv (4.4b) 

V 

dilatation Pu = e-~P u or 

pqU = p ~  

or p'U = LuUpV 

p'U = e-~pU (4.4c) 

q'U = eeqU, ~ E R 1 (4.3c) 
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and for the "accelerations ''~ 
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3 0 q V  
P'u = ~ ~--~Pv = [,~(6u v + 2qu cv) - 2(cu + c2qu)(q v + q2cV)lPv 

/-'=0 

(4.4d) 

or  

~ aq 'u pV = ~ f - z  [ ~ ( ~ v  # + 2qvc~Z) _ 2(cv + C2qv)(q g + q2c#)]pV p,lZ = 
v=o 3qv 

qu = rluvq u, Cv = rlv~c ~ fir= 1 + 2q "c + q2c2 

The symptectic form o is invariant with respect to arbitrary coordinate trans- 
formation q,U = q,U(qO . . . . .  qa),  thus, it is also conformally invariant. The 
relativistic mass is a scalar with respect to the Poincar6 group but  it changes 
under the dilatations and accelerations: 

m' = e-am (4.5) 

m '  = J/fm (4.6) 

Let us now denote ~j'~ = ((q, p) E T*(M4) :p2 > 0 and pO > 0).  The domain 
J -~  is transformed into itself by  the transformations (4.4). In what follows 
we shall be interested in particles for which m 2 = p2 > 0 and pO > 0, and 
therefore further consideration will be restricted to the realizations of  Gconf 
o n  3 ~  ", 

5. Physical Coordinates on {1), co) 

The following fact takes place: 

Statement. (D, co) is isomorphic as a symplectic manifold to (~--~, 4o t~-~). 
The isomorphism which we shall construct below is interesting for the physi- 
cal interpretation, for it allows one to identify- the generalized disc with the 
phase space of  a scalar positive mass particle. The construction consists in the 
transition to a new matrix representation of  the group SU(2, 2), which is con- 
nected with the old're p rresentation . . . .  b y the transformation Ad (d)." g ~ Ad (d)g = 
d-lgd, where d = (1/~/2) (~lz  ~ )  E U(4). Conditions fo rg '  = ( ~ / ~ ) A ,  B, C, 
D E Mat2(C 1) to be an element of  the group Ad(d)[SU(2, 2) = d SU(2, 2)d -1 
take the form 

C + A - A + C = O  (A B )  

A + D - C + B  =E,  det C D = 1 (5.1) 
D + B - B + D  = 0  

1 Calculating (4.4d) we made use of the formula bqV/~qP# = ~,~2~v~#o~q'P/~q~. 
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An arbitrary complex matrix V E Mat2 (C 1) may be uniquely decomposed 
into its Hermitian and anti-Hermitian parts V = Q + iK, where G + = Q and 

K ÷ = K. The domain T~ a_; (VE Mat2(C 1 ) :detK > 0 and Tr K > 0) is 
called the four-dimensional wedge. The matrix d = (~'t a~ )= (1/x/~) (~iE lEE ) 
induces the one-to-one holomorphic mapping N : D  -$ T~4 given by the 
formula 

V= D(z) a=; ( d l l Z  + dl2)(d21z + d 2 2 ) -  1 = i(E - zXE +z ) - '  (5.2) 

We obtain the inverse transformation by taking the inverse matrix d -1 = (1/x/~) 
( ~ e  E) instead of the matrix d 

a ;  
z = ~ - ' ( v )  = (iv +E)(- iv  +E) - '  (5.3) 

Both definitions are meaningful, since det (E + z) 4:0 for z ~D,  and det 
(iv + E) ~ O for v C T+ 4. They = D(z) belongs to T~ and z = ~ - l ( v )  E D  since 

det K = (1/16)ldet (V+ iE)U123,13, 2 
(5.4) ( ¢1 o)) 

TrK=(1 /4 )  Tr [(V + iE)U] + (V + iE)U 

\ 0  X 2 

(we recall that 3`1,3`2 are eigenvalues of the matrix E - zz÷). We shall define 
one more transformation, which maps the four-dimensional wedge onto the 
phase space ~-~ of a scalar particle with a positive mass. The transformation 
I (inversion), assigns to Q + iK the point x = x(q °, . . . ,  q3, pO . . . .  , p3) such 
that 

3 
Q= ~ qua# 

/~=0 

1 3 = ~ p'UU u 
detK K u=o 

(5.5) 

The transformation I is a smooth one-to-one mapping of the four-dimensional 
wedge T~ onto J-~-. The above facts may be expressed in form of the following 
commuting diagram: 

(5.6) 

Here,g = (~ ~) C SU(2, 2) andg' = (A BD) =dga-1  E Ad(d)[SU(2, 2)1. 
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Thus, it is easy to see that the realization OT2 of the group Ad(d)[SU(2, 2)] 
on T~ is given by the formula 

V ' =  OT2(g', V =  ( A V + B ) ( C V + D )  -1 , V = ~ ( z )  E T2 (5.7) 

and the realization o f  7 of the same group on ,Y-~ is given by 

x '  = o x : ( g ' ) x  = (I  o Or:(g') o I - i ) x ,  x @ 3-"~ (5.8) 

The ~ - i  carries the symplectic structure from the generalized discus D to 
T~. Namely 

/ ~ ( ~ - - I ) * o D  = 8 [ ( 0  --  19) 2 ] -1  [ 2 / ( O  --  t~)2(O~ - -  t~O~)(Ol~ - -  a/J)  - -  g/o~3 d O  s Ad17q~ 

(5.9) 

where 0 are determined by the equation 

3 
V= ~ Ouo. 

g=O 

Similarly ( /o  N ) - I  carries the symptectic structure of D to J '~ .  After a short 
calculation we get 

2 
A(I o N- l )*co  = 4r/uv dP v A dq v = 4el j -  2 (5.10) 

+i From (5.10) it follows that I o N : D -+ J -4  s an isomorphism between the 
symplectic manifold (D, co) and (J '~,  40 l :~) .  This completes the construction. 

The mapping constructed above, I o ~ ,  besides carrying the symplectic 
structure, transforms also the realization of the conformal group ol) into the 
realization 0,¢+, defined on 3"~. It is also interesting to note that the inverse 
mapping ( ~  o ~ - I  provides one of possible compactifications of the Minkowski 
space-time. In fact it maps M 4 into an open subset of the matrix group/2(2) C 
OD. We shall discuss now some properties of the new realization of  Geonf. This 
might be most conveniently done by specifying some subgroups of Ad(d) 
(SU(2, 2)), which poses a simple physical meaning. These subgroups can be 
distinguished by introducing the following basis in the algebra, Ad(d)[50°?/(2, 
2)1 = dSeq/(2,  2) d -1 

(°0) (; o/a k 

P.= rk= 
0 

C:t D=  Kv = 

0) (:0) 
N:= 

i o  , - -  , 

p , v = 0 , 1 , 2 , 3 ,  k , ] = 1 , 2 , 3  

(5 . i1)  
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After performing the exponential transformation exp: Ad(d)[2Tq/(2, 2) 
Ad(d) [SU(2, 2)] we find that 

exp t~Pu : T =  tVo  u, T + = T (5.12a) 

where Pu are the generators of the translation subgroup 

expx, (: ;) ex x. 
where Ik are generators of the rotation subgroup 

UU ÷ = E,  det U= 1 

(5.12b) 

R -  , 
R = expykok,  R + =R,  

where Nk are generators of the Lorentz rotation subgroup 

exp aD = a @R 1 

e -a: 

det R = 1 

(5.a2c) 

(5.12d) 

where D is a generator of the dilatation subgroup 

exp c~Kv = C =  cV o~, C ÷ = c (5.t2e) 

where K~ are generators of the "acceleration" subgroup. The matrix (o A ~T÷)_~ ), 
where A = R U ,  corresponds to the general element (A, 73 of the Poincar6 group. 
The realization now takes the following form: 

Translations: 

q'U = qU + t u 

(5.13a) 
p'~U = p.~ 
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Lorentz transformations: 

q'U = Lz, Uq ~' 

where L~, u o u = A a~4 + 

Dilatation 

p'U = L Up~' 

q'U = eC, qp 

589 

(5.13b) 

(5.13c) 

p'U = e-c`pU 

"Accelerations" 

q'~ _ [q# + (q2 _ k2)c~] [1 + 2c.q + c2(q 9- - k2)] + 2[c .k  + (q .k)c 2 ] [k ta + 2(q .k)c #] 
[1 + 2c.q + c2(q 2 - k2)] 2 +4[c-k  + (q.k)c2] 2 

(5.13d) 

/d# - -2[qtZ + (q2 - k:~)cl~] [c .k+(q .k)c2] + [ktS+ 2(q .k)cUl [1 +2(c.q)+c2(q 2 - kZ)] 
[1 + 2c.q +e2(q 2 - k 2 ) ]  2 + 4 [ c - k  + (q" k)c2 ] 2 

where 

p'~ = k'l~/k '2, p~ = k#/k 2, K = k#ag, c. k = ~ p c ~ k  p 

The manner in which the specificated subgroups act on ~Y'~ justifies the termi- 
nology introduced. The Poincar6 subgroup and dilatation subgroup act in the 
same way as they traditionally do on T*(M4). The peculiarity lies in the form 
of the accelerations which now transform the momenta  nonlinearly. For com- 
pleteness we shall also specify the form of  the two hornomorphisms d o :  +4 and 
Xy-] which appear in the following diagram 

0 , R1 t> C ~ ( f ~ , R  1) v Ho(~_~) -~ 0 

Ad(d) [Sa°g (2, 2)] (5.14) 

The values of  these homomorphisms are 

= - -  (5.15a) doj+(P,~) Oq,~ 

d o : ; ( L c ~ )  = qc` ~q~ - q~ 3q---~ + Pc` ~p~ - P~ 3p ~ (5.15b) 

day-; (D)  = q~ ~ - pC, ~ (S.15c) 
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aq # [ ~--'@ - 0q "r (5.I5d) 

+ 2 [ ( q ' p ) 8 ~  +q#p'r _p#q'r] 
~p'r 

Here we put L m =N1, Lo2 =Nz, Lo3 =N3, L23 = Yt, L3~ = Y2, L12 = Y3 and 
Lap = -L[3a. Subsequently we have 

X:~(Pa) = 4p~ (5.16a) 

Xy-~(Lat3) = 4(q~p~ - q~Pc~) (5.16b) 

Xy-~(D) = 4q .p (5.16c) 

X3-g(Kt~ ) = 4[(q 2 - 1/p2)p~ - 2(q .p)q~] (5.16d) 

All the quantities quoted above are tensors with respect to the Lorentz group. 
The relativistic angular momentum X:2(L~¢) and X:2(D ) are, in addition, 
invariant with respect to the dilatation. 

6. The Physical Interpretation 

In the preceding section it was shown that the symplectic manifold (J-~, 
401:~)  can become a homogeneous space of Gconf in two ways: (a) as an open 
domain in the phase space T*(M4) (with the natural symplectic structure and 
the standard action of Gconf); (b) as a symplectic space isomorphic to (D, o~). 
When one takes into account the symplectic structure alone, this distinction 
makes no difference. However, G-symplectic spaces corresponding to both 
cases (a) and (b) are essentially different. Thus, in case (a) the properties of 
conformal transformations of the phase space are "secondary": they are 
covariantty determined by the space-time conformal transformations, and, 
consistently, the momentum of a particle is always transformed in a linear 
way. In this case there is a mathematical difficulty caused by the impossibility 
of defining the transformation of "acceleration" on the whole space-time. 
Contrary to (a), the case (b) has an advantage of being mathematically correct 
since all conformal transformations including the "accelerations" are well 
defined. In this case, however, the conformal transformations in the phase space 
have a fundamental character and are not covariantly defined by the space-time 
transformations above. Inversely, the space-time transformations are "secondary" 
and they are determined by the phase space transformation. In order to compare 
both cases more explicitly, consider a massive (m >> 1) and slowly moving 
( IP I~  m) physical object, (e.g., a nucleon, an atom). Then kt* =pulp2 = (pO/m2 ' 
p/m 2)x = 0. If we apply the zero approximation in (5.13) with respect to kU 
we get k 'u = 0 for k u = 0 and we obtain for the space-time coordinates qU the 
transformation formulas, which coincide with the usual action of the conformal 
group on the space-time given by (4.3). If we consider the linear approximation 
in k ~ instead of the zero approximation, then after expanding (5.13d) into 



MODEL OF CONFORMAL KINEMATICS 591 

the Taylor series with respect to kS and neglecting the higher-order terms we 
obtain for the "acceleration" 

qS + q2 eS 
q' S _~ 

I + 2c. q + c2q 2 

3 
k 's ~- ~ H - 2  [~p(6us + 2qvc") - 2(cv + e2qv)(q s + q2cS)] k v 

v=O 

v~__o 3q v 

and for the momentum 

(6.1) 

r 

p'S = ~ 2  3q 's pV or P s = Pv (6.2) 
v=o Oqv ~ 3q'u 

As is seen, (6.2) coincide with (4.4d). The remaining transformations corre- 
sponding to the Poincar4 and dilatation subgroups are linear, and so they 
coincide with their linear approximations. Hence, the case (a) corresponds to 
the linear approximation of the conformal transformations appearing in the 
case (b); the approximation k s ~ 0 corresponds to a slowly moving massive 
particle, whereas the limit m ~ oo corresponds to the zero approximation. 

Now, one might think about a physical interpretation of the case (b) in 
the spirit of a "conformal relativity." In such a theory an "event" would 
be a point of the symplectic manifold x = (qS, Pv) and it could be interpreted 
as an act of creation (annihilation) of a particle with a momentum pS in 
space-time point qS. Consistently the "world line" of a particle would be one 
parameter family of "events" x( t )  = (qS(t), pV(t)). Here the successive events 
on the "world line" would be interpreted as a kind of a continuous creation 
process. The above idea of the "world line" contains in a sense a more com- 
plete physical information than the orthodox one. It allows one to describe 
naturally the objects with changing mass (such as inelastically scattering 
particles): they are simply represented by these "world lines" that break the 
constraints condition pS(t )pu( t )  = m 2 = const. The correspondence to the 
traditional events of  special relativity is given by the family of flame-depen- 
dent projections II(s): Y ~ - + M  4 defined by II(s)x = (q#), where (qS) are 
space-time coordinates of  the event x in the "generalized inertial flames" s. 
The new character of the case (b) now finds its expression in the fact that, 
for two events x 1 and x 2 for which II(s)x I = I](s)x 2 in one reference frame 
s, one has, in general, II(s')x 1 ~= II(s')x 2 . It thus follows that the "relativity" 
considered above provides a certain generalization of the very idea of the 
space-time. Its meaning can be best exhibited by comparison with the historic- 
ally accepted models of space-time. 

The Aristotelean Relativity. 2 The fact that two particles (with arbitrary 

2 By the Aristotelean time-space we understand E 1 x E 3 where E 1 corresponds to time, 
E 3 corresponds to the space. 
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momenta) have been created (annihilated) in the same time (time coincidence) 
has an absolute sense. Similarly the fact that two particles have appeared in 
the same place (space coincidence) has anabsolute sense. 

The Galileo Relativity. The time coincidence of two acts of creation 
(annihilation) has an absolute sense but the space coincidence has only a 
relative meaning. 

The Minkowski Relativity. Neither the time nor space coincidence have 
absolute sense. Still, the space-time coincidence has an absolute meaning 
independent of the type and momenta of the particles created (annihilated). 

Con formal Relativity (Case b). Even the notion of the space-time coincidence 
loses its absolute meaning. Two particles with two different momenta, which, 
for one observer, have been created (annihilated) in the same space-time point, 
for another (accelerated) observer are created (annihilated) in two different 
space-time points. Two objects with different masses which, for one observer, 
have the coinciding world lines and therefore are always seen together can be 
seen separately by another observer. These effects disappear in the limit for 
the slowly moving ([Pl ~ m) and massive (m >> 1) particles. They might suggest 
a possibility of a physical theory where the very concept of the space-time 
trajectory would lose its sense for high-energy partic!es when observed in 
high-acceleration regions. 

The model of the conformal kinematics we have presented here was con- 
sidered as the classical one. However, it is possible to perform the quantization 
making use of the quantization procedure given by Kostant (1970). 
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Appendix 

(1) The Riemannian Structure Carried from D. The symplectic form c~ has 
been constructed as a counterpart of a metric form ds 2 on D. When carried 
on ~-" ~ it becomes 

2 
dg2 = Q [ ( i o ~ ) - a ]  * ds 2 = 212pap~_p2~7aO] (dq2Qdq~ + [1/(p2)2] dp~®dp~) 

We find, that the form of the Laplace operator for the metric d~ 2 is 

/x = (-1/4)Cz 

where CI denotes the Casimir operator of the second order for the algebra 
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do9- 2 {Ad(d)[SU(2, 2)]}. This may be expressed by the formula 

C I = 177~Y77~ d o f + ( L ~ ) d o y - ~ ( L ~  ) + ~ [day-~(P~)doy-~ (K~) 

+ doy:(K~)daar:(P~) ] - 2[do:~(D)] 2 

2. (D, co) as the Orbit in the Space Dual to the Lie Algebra 5Pag(2, 2). As is 
known (see Kostant, 1970) all the symplectic G spaces of a Lie group G are 
exhausted by the orbits of the K representation in the space ~ *  dual to the 
Lie algebra ~ of the group G. The representation K = Ad*, where Ad denotes 
the adjoint representation of the group, and the asterisk denotes the conjugate 
representation. In the case of the group SU(2, 2), by the introduction in 

5~¢//(2, 2) the scalar product (x 1, x2) d=f Tr x 1 x2, x 1, x2 E ~9°~g(2, 2). Thus (D, co) 
is isomorphic to the orbit generated by the element X/:E o to E : , X E R 1 .  
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